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a  b  s  t  r  a  c  t

Learning  to select  optimal  behavior  in  new  and  uncertain  situations  is a  crucial  aspect  of living  and
requires  the  ability  to quickly  associate  stimuli  with  actions  that  lead  to rewarding  outcomes.  Mathe-
matical  models  of  reinforcement-based  learning  to select  rewarding  actions  distinguish  between  (1)  the
formation  of  stimulus–action–reward  associations,  such  that,  at  the  instant  a  specific  stimulus  is pre-
sented,  it  activates  a specific  action,  based  on  the  expectation  that  that  particular  action  will likely  incur
reward  (or  avoid  punishment);  and  (2)  the  comparison  of  predicted  and  actual  outcomes  to  determine
whether  the  specific  stimulus–action  association  yielded  the  intended  outcome  or  needs  revision.  Ani-
mal  electrophysiology  and  human  fMRI  studies  converge  on the  notion  that  dissociable  neural  circuitries
centered  on  the  striatum  are  differentially  involved  in different  components  of  this  learning  process.  The
modulatory  role  of dopamine  (DA)  in  these  respective  circuits  and  component  processes  is of particular
relevance  to the study  of  reward-based  learning  in patients  diagnosed  with  Parkinson’s  disease  (PD).  Here
robabilistic learning we show  that  the  first component  process,  learning  to  predict  which  actions  yield reward  (supported  by
the anterior  putamen  and  associated  motor  circuitry)  is impaired  when  PD  patients  are  taken  off  their  DA
medication,  whereas  DA medication  has  no systematic  effects  on  the  second  processes,  outcome  evalua-
tion (supported  by caudate  and  ventral  striatum  and  associated  frontal  circuitries).  However,  the  effects
of DA  medication  on  these  processes  depend  on  dosage,  with  larger  daily  doses  leading  to  a  decrease  in
predictability  of  stimulus–action–reward  relations  and  increase  in  reward-prediction  errors.
. Introduction

Learning to select behavior to maximize reward in a given sit-
ation is a fundamental aspect of living. For example, in new
nd uncertain situations, the ability to quickly acquire associa-
ions between stimuli and actions that receive reward ameliorates
election of optimal behavior. Reward-based decision-learning
aradigms enable us to measure the process of learning associa-
ions between stimuli, actions, and their related rewards. Several
rain circuits are involved in reward-based decision-making and
learning, including prefrontal cortex (PFC) and subcortical areas

ike the basal ganglia (BG). Additionally, the neurotransmitter
opamine (DA) plays a modulatory role in these functions through
rojections from midbrain DA nuclei to the BG and cortical areas

∗ Corresponding author at: TNO Defence, Security and Safety, P.O. Box 23, 3769
G  Soesterberg, The Netherlands. Tel.: +31 0346 362545; fax: +31 0346 353977.
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oi:10.1016/j.neuropsychologia.2011.12.012
© 2011 Elsevier Ltd. All rights reserved.

(Schultz, 2002). The current study aims to differentiate the role of
DA in substructures of the striatum during reward-based decision-
learning by means of testing patients diagnosed with Parkinson’s
disease (PD) both ON and OFF their DA medication on a probabilistic
learning task.

1.1. The role of the striatum in reward-based decision-learning

Although the BG are traditionally known to contribute to motor
function (Alexander, DeLong, & Strick, 1986; Alexander, Crutcher,
& DeLong, 1990), more recently the BG have been shown to be
engaged in several types of learning, including habit formation, pro-
cedural skill learning, and reward-based decision-learning (Brown
& Marsden, 1998; Kimura, 1995; Knowlton, Mangels, & Squire,
1996; Packard & Knowlton, 2002; Schultz, Tremblay, & Hollerman,

2003).

Lesion and human imaging studies demonstrate an important
contribution of the striatum to reward-based decision-learning and
support a functional dissociation between dorsal and ventral areas

dx.doi.org/10.1016/j.neuropsychologia.2011.12.012
http://www.sciencedirect.com/science/journal/00283932
http://www.elsevier.com/locate/neuropsychologia
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f the striatum (for an overview see Balleine, Delgado, & Hikosaka,
007). Dorsal portions of the striatum are implicated in cogni-
ive and motor aspects of reward-based learning (O’Doherty et al.,
004; Seger & Cincotta, 2005; Seymour, Daw, Dayan, Singer, &
oyan, 2007; Tricomi, Delgado, & Fiez, 2004). For example, vari-
tions in dorsal striatal activity signal the evaluation of an action
n terms of reinforcement and punishment. Furthermore, lesions
o regions of the dorsal striatum as well as DA depletion in these
reas disrupt formation of stimulus–response associations (Faure,
aberland, Condé, & El Massioui, 2005; Yin, Knowlton, & Balleine,
004). Activation of the ventral striatum is more strongly associ-
ted with establishing expectations and motivational incentives
ith respect to the rewards of a response or decision. For instance,

entral striatal activity is commonly observed when actual rewards
iffer from expected rewards (i.e., reward-prediction error or RPE;
nutson, Fong, & Hommer, 2001; McClure, Berns, & Montague,
003; O’Doherty et al., 2004; Seger & Cincotta, 2005).

In addition to this functional dissociation, recent imaging stud-
es have suggested that the putamen and caudate of the dorsal
triatum may  contribute to dissociable aspects of action-based
earning. For instance, Haruno and Kawato (2006a) studied BG
ctivity in healthy participants during performance on a proba-
ilistic learning task, in which participants had to discover for
ach particular stimulus whether a right or a left button press
ed to a reward most of the time; through trial-and-error, they
earned stimulus–action–reward associations. A Q-learning model

as used to generate individual parameters that reflect two  impor-
ant aspects of learning. First, the mismatch between anticipated
ewards and actual rewards was computed as a reward-prediction
rror (RPE), which learners used for adjusting decision-making on
uture trials, in particular in the early stages of learning when
hey relied on feedback to determine which actions maximize
ewards. Higher RPE values were associated with activation of
he caudate nucleus and ventral striatum and their associated
rontal circuitry (orbitofrontal, dorsolateral prefrontal, and anterior
ingulate cortex), involved in generating and testing hypothe-
es regarding reward optimization (cf. Alexander et al., 1990;
yama, Hernadi, Iijima, & Tsutsui, 2010). Second, as learning pro-
ressed, participants should have been able to forecast which
ctions would likely yield reward (or avoid punishment); this was
omputed as the stimulus–action-dependent reward prediction
SADRP). Higher SADRP values reflected more effective learning
f stimulus–action–reward associations, and hence, were maximal
t the later stages of the task. Higher SADRP values were asso-
iated with activation of the anterior putamen and its associated
otor circuitry (supplementary motor area, premotor and primary
otor cortex), involved in integrating information on the expec-

ation of reward with processes that mediate the actions leading
o the reward (cf. Alexander et al., 1990; Gerardin et al., 2003).
hus, during later stages of learning, putamen activity increased
ith reward predictions (i.e., with learning SADRPs).

Activity in the putamen increased to incorporate more specific
otor information with the associated stimuli and the expected

eward; that is, the reward associated with a specific stimulus
nd a specific action became more predictable and learning was
radually fine-tuned (Haruno & Kawato, 2006b). As these SADRP
alues increased, the RPE was reduced as subjects more accu-
ately anticipated the rewards associated with their actions. The
uthors argued that the global reward-related features of these
timulus–action–reward associations appeared to propagate from
he caudate to motor loops (which include the putamen and pre-

otor areas), likely by means of a DA signal subserved by reciprocal

rojections between the striatum and the substantia nigra (Haruno

 Kawato, 2006b).  Interestingly, this change in emphasis from RPE
uring early phases of learning to SADRP during later stages bears
esemblance to the phasic DA bursts displayed by striatal neurons
hologia 50 (2012) 583– 591

after unexpected reward during early phases which shift to the
time of conditioned reward-predicting stimuli during later stages
(Balleine et al., 2007; Schultz et al., 2003).

1.2. Dopamine modulation of reward-based learning

Several lines of research, including studies of DA-deficient pop-
ulations, human drug studies, animal studies, and computational
modeling, have indicated that DA, via projections from the sub-
stantia nigra and ventral tegmental area to the dorsal and ventral
striatum, respectively, plays a modulatory role in aspects of reward-
and action-based learning (Arnsten, 1998; Cools, 2006; Daw, Niv, &
Dayan, 2005; Eyny & Horvitz, 2003; Frank, 2005; O’Reilly and Frank,
2006; Schultz, 2002). For example, human and primate studies
reveal midbrain DA neuronal firing that is timed to reward, espe-
cially if it is unexpected (Koepp et al., 1998; Pappata et al., 2002;
Schultz, 2002). If a stimulus precedes and reliably predicts the deliv-
ery of a reward, the timing of the firing of DA neurons will shift from
the reward itself to the onset of the cue stimulus as learning evolves
(Schultz, 2002). This shift in DA firing from reward to antecedents
of the reward forms the basis of the temporal-difference learning
theory of DA, which states that links between stimuli and responses
are adjusted to minimize error between predicted and actual out-
comes (i.e., the temporal difference error). These prediction errors
are coded by changes in firing rate of the DA neurons. These findings
provide a strong link between DA function and aspects of reward
processing and learning.

1.3. Reward-based learning in Parkinson’s disease

Understanding the role of DA in learning is particularly impor-
tant when considering neurological conditions that disrupt the DA
system. PD represents one of the more dramatic examples of human
DA dysfunction that results in marked changes in motor and cogni-
tive functioning. Studies of PD patients are important from a clinical
perspective, but also provide a complementary approach to investi-
gate the role of the basal ganglia and DA function in reward-based
learning. PD is a neurodegenerative process commencing in the
midbrain, in particular in those dopaminergic neurons of the sub-
stantia nigra that project in a compact bundle of fibers into the
dorsolateral striatum (mostly the putamen; Bjorklund & Dunnett,
2007).

The primary treatment to reduce PD motor symptoms, which
commonly include tremor, bradykinesia, and rigidity, aims to
increase DA availability and activity, including, most prominently,
medication functioning as a DA precursor (typically levodopa) or as
a DA agonist (Hornykiewicz, 1974). Because regions of the striatum
are differentially affected by the disease, DA medication differen-
tially affects these structures and their related functions. Although
DA pharmacotherapy successfully improves motor deficits in PD,
its effects on cognitive processes are more equivocal. For exam-
ple, in a critical review of the literature, Cools (2006) concluded
that DA medication can have positive and negative consequences
on cognitive performance among PD patients. For example, cer-
tain cognitive functions, such as task-switching that rely on the
heavily DA-depleted dorsolateral and motor loops, improve with
DA pharmacotherapy, whereas other aspects of cognition, such as
reversal and extinction learning, that depend on ventral circuitries
of the basal ganglia and remain relatively spared in early PD, are
impaired by DA medication (Cools, Barker, Sahakian, & Robbins,
2001). These contrasting patterns led to the “overdose” hypothesis,
which attempts to account for the negative effects of DA medication

on certain cognitive processes (Cools et al., 2001; Czernecki et al.,
2002; Gotham, Brown, & Marsden, 1988; Swainson et al., 2000).

However, not all aspects of reward-based decision-learning are
compromised by DA medication. For example, Shohamy, Myers,
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Table 1
A. PD patient information.

Sample N = 20

Mean SE

Age (yrs) 68.5 ±1.6
Sex  (male/female) 14/6
MMSE 28.7 ±0.3
Years since disease onset 8.08 ±1.3
L-Dopa (daily dose mg)  527.5 +54.3
Agonist dose in LEDD (daily dose mg)  106.8 +39.0
Total LEDD (daily dose mg) 634.3 ±74.7
Finger tapping ON (# taps) 39.5 ±2.2
Finger tapping OFF (# taps) 40.3 ±2.0
N.C. van Wouwe et al. / Neu

rossman, Sage, and Gluck (2005) found that feedback-based learn-
ng improved when PD patients were ON DA medication compared
o when they were OFF medication. Frank, Seeberger, and O’Reilly
2004) showed that this benefit obtained specifically for learning
hat certain actions are likely to yield reward, whereas learning
hat certain other actions are likely to yield punishment was nega-
ively affected by DA medication. This pattern of levodopa-induced
mproved incentive learning but impaired avoidance learning,
eplicated by Bódi et al. (2009),  is taken to reflect strengthened
isinhibition along the direct route and weakened inhibition along
he indirect route within the basal ganglia.

Although studies converge on the notion that striatal regions
lay a key role in reward-based decision-learning (Bódi et al., 2009;
ools et al., 2009; Frank et al., 2004; Haruno & Kawato, 2006a,
006b; Knutson et al., 2001; McClure et al., 2003; O’Doherty et al.,
004; Seger & Cincotta, 2005; Tricomi et al., 2004), the modulatory
ole of DA in different structures within the striatum is not yet well
stablished. DA might have dissociable effects on different compo-
ent processes of reward-based decision-learning, for example, on
utcome evaluation processing supported by caudate and ventral
triatum or on reward prediction processing supported by anterior
utamen.

.4. Present study

The present study investigates the effect of DA modulation on
eward-based decision-learning. PD patients performed the pre-
iously mentioned probabilistic learning task (Haruno & Kawato,
006a) both ON and OFF DA medication (within-subjects). We
etermined the effect of medication on reward-prediction errors
RPE) during the early phase of learning and on formation
f stimulus–action–reward associations (SADRP) during the last
hase of learning.

In accordance with patterns of disease progression in PD
Bjorklund & Dunnett, 2007; Kaasinen & Rinne, 2002), DA med-
cation should enhance motor-related functions supported by
he severely depleted dorsal striatum (in particular the puta-

en  and associated motor circuitry). Therefore we  predicted that
A medication would have beneficial effects on the formation
f stimulus–action–reward associations. Less pronounced effects
ere anticipated with respect to RPE values, since the dorsal and

specially ventral parts of the caudate are thought to be less
epleted from DA compared to the putamen.

. Methods

.1. Participants

Our study included 20 PD patients (6 females; mean age, 68.5 years) treated with
nti-parkinsonian medication (L-dopa and D2 agonist). Eight patients were on DA
gonists (pramipexole or ropinirole) in addition to L-dopa, whereas the remaining
atients were exclusively treated with L-dopa. Dopamine precursors and dopamine
gonists were converted into one value representing L-dopa equivalent daily doses
LEDD) values (Weintraub et al., 2006). Summaries of relevant patient details can be
ound in Table 1. Patients with a history of major psychiatric disorders, psychoac-
ive medication, alcoholism, stroke, neurosurgical operation or any other condition
nown to impair mental status other than PD were excluded. All subjects partic-
pated voluntarily and gave their written informed consent prior to participation,
s part of procedures that complied fully with relevant laws and with standards of
thical conduct in human research as regulated by the University of Virginia human
nvestigation committee.

.2. Task and apparatus

.2.1. Questionnaires
The mini-mental status examination (MMSE, Folstein, Folstein, & McHugh,
975)  assessed the global cognitive state of each patient to verify the absence of
ementia (i.e., MMSE  score higher than 25). To capture the effects of DA medica-
ion on fine motor dexterity and speed, we administered the Purdue Pegboard task
Lezak, 1995) and a finger-tapping test during each condition. The latter required
articipants to use the index finger of each hand to tap a tapping board as fast as
Pegboard ON (time in s) 32.3 ±2.3
Pegboard OFF (time in s) 33.5 ±2.0

possible during a period of 10 s. The tapping task alternated between each hand until
three attempts were completed with each hand.

2.3. Experimental paradigm

A probabilistic learning task, adapted from Haruno and Kawato (2006a, 2006b),
was implemented on an IBM-compatible computer with a 17-inch digital display
monitor. The computer screen, placed at a distance of 91 cm,  was positioned so that
stimuli appeared at eye level. Stimuli consisted of colored pictures against a dark
background. Responses to stimuli were right or left thumb button presses registered
by  comfortable handheld grips.

The probabilistic learning task was  designed to estimate RPE and measure the
learning of SADRP, which have been linked to caudate nucleus and putamen activity,
respectively. Subjects were instructed that the goal of the task was to make as much
money as possible by pressing a left or a right button press to each picture stimulus
that appeared on the computer screen. Each response provided the chance to either
win  or lose $50 in game money (note: participants were not remunerated for their
participation). Fig. 1 depicts the sequence of a trial from the task. Each trial began
with the presentation of a fixation point (an asterisk) in the center of the screen, and
subjects were instructed to focus on this point in anticipation of the presentation of
a  picture stimulus. After a duration of 500 ms, the fixation point was extinguished
and one of three picture stimuli (colored fractals) appeared in the same location
as  the fixation point. The picture stimulus subtended visual angles of 5.67◦ × 4.41◦

(9 cm × 7 cm). The picture stimulus remained on the screen for 700 ms.  Participants
were instructed to view the picture stimulus, but not to respond until the picture
stimulus disappeared and was replaced by a response screen. The response screen
consisted of the fixation point and two gray boxes displayed at the bottom left and
bottom right portions of the screen, respectively (see Fig. 1). Upon the presenta-
tion of the response screen, the participant was instructed to make a left or a right
button press, which would then be indicated on the screen by a change in color
(from gray to yellow) of the box that corresponded to the response side that was
chosen (left button press = left box turns yellow). The participant was given 3 s to
issue a response. After the button press was indicated on the screen, a large box with
feedback appeared in the center of the screen. If the participant chose the correct
response, the large box appeared in green, indicating that $50 had been won. If the
incorrect response was chosen, the box appeared in red, indicating that the partic-
ipant had lost $50. Throughout the entire trial, a running tab of the total amount
of  money won by the participant was depicted in the upper center portion of the
screen. Thus, if the participant won or lost $50 on a particular trial, the running total
was  immediately updated.

Subjects completed three conditions of 48 trials. For each condition, a novel set
of  3 picture stimuli were used. The reward outcome of each response to a picture
stimulus was determined in the following way: (1) for each picture, one response
hand was assigned as the optimal choice and the other response hand was desig-
nated as the non-optimal choice; (2) in the first condition, selecting the optimal
response hand resulted in a 90% probability of winning $50 and a 10% probability of
losing $50; (3) in a second condition, selecting the optimal response hand resulted
in  an 80% probability of winning $50 and a 20% probability of losing $50; (4) in a
third condition, selecting the optimal response hand resulted in an 70% probability
of  winning $50 and a 30% probability of losing $50. In all conditions, the probabilities
of  winning versus losing were reversed for the non-optimal relative to the optimal
response hand. As an example, in the 90/10 condition a left response to fractal stim-
ulus 1 (FS1) yielded a $50 reward with a probability of 0.9 (90%) and a $50 loss with a
probability of 0.1 (10%). A right response to FS1 yielded a $50 loss with a probability
of  0.9 and a $50 reward with a probability of 0.1. Therefore, the optimal behavior for
FS1 in the 90/10 condition was to press the left button, which participants had to

learn by trial and error. The dominant probabilities for optimal behavior regarding
the other fractal stimuli (FS2 and FS3) in the 90/10 condition were also 0.9. The opti-
mal  response for each fractal was pseudorandomized over left and right hands, for
example optimal behavior could be FS1: right, FS2: left, FS3: right, which means that
these responses were rewarded with positive feedback 90% of the time. Similarly,
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ig. 1. Trial example of the probabilistic learning task adapted from Haruno and Ka
o  this specific stimulus.

 response pattern could consist of two  fractals that were rewarded (most of the
ime) with a left hand response and one with a right hand response. For each condi-
ion, the specific response options were randomly attached to each of the fractals.
dditionally, the fractal stimuli were presented randomly and with equal frequency
ithin a condition. Condition order was also randomized.

.4. Procedure

Participants completed two versions of task on different days. The versions were
imilar in all respects except the picture stimuli differed. Patients completed the task
N their anti-parkinsonian treatments (L-dopa, DA agonist) and OFF medication. The
rder of testing with respect to the status of the medication was  counterbalanced
nd randomly determined among patients. Prior to completing the task, each par-
icipant signed the consent form and completed the MMSE. As well, each participant
ompleted the pegboard and finger tapping tasks ON and OFF medication. Testing
FF medication took place after a 12 h withdrawal period after which L-dopa blood
lasma concentrations are reduced to zero (Crevoisier, Monreal, Metzger, & Nilsen,
003; Gasser, Jorga, Crevoisier, Hovens, & van Giersbergen, 1999). Note however
hat DA agonists are associated with a longer half-life, which may have resulted in
ome residual medication effects.

.5. Computational model for estimating SADRP and RPE

A  reinforcement model (Q-learning, Sutton & Barto, 1998) was  used to estimate
ndividual SADRP and RPE during learning. Q-learning is an implementation of a tem-
oral difference model which assumes that stimulus–action–reward associations
re acquired as a single representation during learning. The SADRP value (Q) con-
ists of the predicted amount of reward for a certain decision (left or right response,
)  made for a specific stimulus (one of three fractal stimuli, FS). It thus relates reward
o  sensory input and actions. Individual predicted reward values (SADRPs) for each
ction (two responses) and each fractal stimuli (three different fractal stimuli) will
e  calculated at time t, Qt (FS, r) which adds up to six SADRP values per condi-
ion. The RPE represents the actual reward received (rt) minus the expected reward,
PE = rt − (Qt (FS, r). For the next occurrence of the same stimulus and action, SADRP
nd RPE values are updated according to the “Q-learning algorithm” to maximize
eward (Sutton & Barto, 1998), Qt+1(FS, r) = Qt(FS, r) + aFS

t (rt − (Qt(FS, r))). The ini-
ial  value of the learning rate for the fractal stimuli is ‘1’ and this value is equal for
ll  subjects.

The learning rate is updated separately for each FS according to the following
ule: aFS

t = (aFS
t−1)/(1 + aFS

t−1). The formula of this learning rate is often used in rein-
orcement learning studies or studies on adaptive control (Bertsekas & Tsitsiklis,
996; Dayan, Kakade, & Montague, 2000; Haruno & Kawato, 2006a, 2006b; Young,
984). It provides an estimation of a learning parameter which is updated recur-
ently with the presentation of a stimulus. In the current study, aFS

t reduces with
he presentation of each fractal stimulus, but remains equal if a specific FS is not
resented. The learning rate (aFS

t ) decreases towards the end of the learning stage
when SADRP becomes reliable). This is an important feature of aFS

t because it means

hat, at the end of learning, the SADRP is less affected by an unexpected RPE (due to
he probabilistic nature of the task).

The RPE is large at the beginning of learning (i.e., first 24 trials as in Haruno
 Kawato, 2006a), while the SADRP value is small. Major changes in SADRP are
specially expected in the first stage of learning. In a later stage of learning (i.e.,
ast  24 trials) SADRP becomes accurate and does not show large changes (converges
o  an asymptotic value). Additionally, RPEs are expected to be small at the end of
earning.
(2006a). In the example, the subject receives a reward by pressing the right button

2.6. Analyses

Motor performance on finger tapping test and pegboard was analyzed separately
by  a one-tailed paired samples t-test. We expected motor performance to improve
ON  compared to OFF medication. A one-sample t-test was  used to test whether
MMSE  scores (OFF medication) were significantly larger than 25.

For  the probabilistic reward learning task, we first calculated the cumulative
accuracy (cumulative percentage correct over trials) for each condition as a function
of  medication to investigate whether medication would affect general learning over
time. Cumulative accuracy (cumulated accuracy values after the first 24 trials and
accuracy after 48 trials) were analyzed by a repeated-measures analysis of variance
(RM-ANOVA) including the within subject variables Medication (OFF, ON), Time
(First, Second Half) and Condition (90/10, 80/20, 70/30).

Second, SADRP and RPE values were analyzed separately by repeated-measures
analysis of variance (RM-ANOVA), including the within-subjects variables of Medi-
cation (OFF, ON) and Time (First, Second Half) and Condition (90/10, 80/20, 70/30)
to investigate whether the patients show RPE and SADRP learning from the first to
the second half of the experiment. The analyses were based on the mean RPE value
from the first half of the task (calculated on the first 24 trials) and the second half
of  the task (based on the second 24 trials) and the mean SADRP value from the first
and second half of the task.

Subsequently, SADRP and RPE values of the theoretically relevant learning
phases were analyzed more elaborately. The RPE analyses were based on the mean
RPE value calculated on the first half, and the SADRP analyses on the mean SADPR
value based on the last half of the experiment. SADRP and RPE values were sep-
arately analyzed by Repeated-Measures ANOVAs, with within-subjects variables
Medication (OFF, ON) and Condition (90/10, 80/20, 70/30). Condition types are rep-
resented as the dominant versus nondominant probability. Specific predictions were
tested by using a Simple Contrast test, that is, Condition 90/10 was  compared with
Condition 80/20 and 70/30.

Since individual disease characteristics of PD patients, like disease duration,
age, and medication dosage may  affect cognitive performance (Kaasinen & Rinne,
2002), disease duration, LEDD and age were correlated with the dependent variables
(change in RPE and SADRP comparing ON and OFF medication and RPE and SADRP
OFF  medication).

First, we  correlated change in RPE (RPE ON minus OFF = �RPE) and change in
SADRP (SADRP ON minus OFF = �SADRP), separately for each condition, with indi-
vidual characteristics (disease duration, age, and medication dosage). Note that
small RPE values are expected ON medication and high RPE values OFF medica-
tion. Thus negative �RPE indicates that participants improved, whereas positive
�RPE  indicates that they were impaired ON compared to OFF medication. SADRP
values are expected to increase ON versus OFF medication; therefore high �SADRP
indicates improved performance.

Correlations between disease duration and RPE and SADRP OFF medication may
provide some addition information regarding effects of disease severity separate
from dosage effects.

3. Results

3.1. Motor performance

Finger tapping, t(19) = −0.648, p = 0.50, and pegboard perfor-

mance, t(19) = −0.19, p = 0.85 were not significantly better ON
medication than OFF medication. MMSE  scores OFF medication
were significantly larger than 25, M = 28.7, t(19) = 14.1, p < 0.001,
indicating that the participants were not demented.
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Fig. 2. (a) Cumulative accuracy for the 90/10 Condition by Medication (On/Off). (b)
Cumulative accuracy for the 80/20 Condition by Medication (On/Off). (c) Cumulative
a
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ccuracy for the 70/30 Condition by Medication (On/Off).

.2. Reward-based decision-learning

Fig. 2 presents the cumulative accuracy values by Medication
nd Condition. Fig. 3 shows the mean RPE values ON and OFF med-
cation separately for the first and second half of the experiment.
ig. 4 displays the mean SADRP values from the first and second
art of the experiment. Fig. 5 shows �SADRP and �RPE ON–OFF in
he 90/10 Condition plotted as a function of LEDD.

.2.1. Cumulative accuracy
Medication produced no significant effect on cumulative accu-

acy, F < 1. Cumulative accuracy increased over Time, (F (1,
9) = 891.39, p < 0.001) and differed across Conditions (F (2,
8 = 5.68, p < 0.01) showing higher accuracy values in the 90/10

M90/10 = 58.70%) compared to the 80/20 (M80/20 = 58.60%) and
0/30 condition (M70/30 = 52.71%) at the end of learning. The Con-
ition effect did not interact with Medication, F < 1, or Time, F (2,
8) = 1.74, p = 0.19. See Fig. 2 for cumulative accuracy values plotted
rial-by-trial separate for each Condition.
Fig. 3. (a) Mean RPE values from the first 24 trials separate for each condition. (b)
Mean RPE values from the second 24 trials separate for each condition.

3.2.2. RPE
RPE values were significantly larger at the beginning of the

experiment compared to the end of the experiment, F (1, 19) = 137,
p < 0.001, which indicates that the patients reduced their reward
prediction errors over time, see Fig. 3. Additionally, RPE values var-
ied across Conditions, F (1, 19) = 105.34, p < 0.001, revealing larger
RPE values in the 70/30 and 80/20 compared to the 90/10 con-
dition. The Condition effect interacted with Time, F (2, 38) = 7.44,
p < 0.01; the 90/10 condition showed a larger reduction in RPE from
beginning to end of learning compared to the other conditions.
Medication did not influence RPE, F < 1, nor did Medication interact
with Time or Condition, F < 1.

Small RPE values are expected ON medication and high RPE val-
ues OFF medication. Thus, negative �RPE indicates that patients
improved whereas positive �RPE indicates that patients were
impaired when ON compared to OFF medication. �RPE in the 90/10
Condition correlated significantly with LEDD, r90/10 = 0.48, p < 0.05.
At low levels of LEDD, outcome evaluation was not affected sys-
tematically by medication ON versus OFF, whereas higher LEDD
was associated with less effective outcome evaluation when ON
medication compared to OFF medication (see Table 2 and Fig. 5
for correlations). Other background variables (disease duration and
age) did not significantly correlate with �RPE values in any of the
conditions (see Table 2). RPE OFF medication did not correlate with
any of the background variables.

3.2.3. SADRP

The second half of the experiment yielded larger SADRP values

than the first half, although the Time effect was  not significant, F
(1, 19) = 1.71, p = 0.2, see Fig. 4. SADRP values differed across Con-
ditions, F (1, 19) = 3.11, p = 0.06, showing significantly larger SADRP
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ig. 4. (a) Mean SADRP values from the first 24 trials separate for each condition.
b)  Mean SADRP values from the second 24 trials separate for each condition.

alues in the 90/10 compared to the 70/30 condition, F (1, 19) = 4.44,
 < 0.05. Overall, Medication did not affect SADRP values, F < 1. How-
ver, the Medication effect interacted with Time, F (2, 38) = 6.53,

 < 0.05; patients ON medication showed an increase in SADRP from
eginning to end of learning trials, whereas very little increase in
ADRP occurred from beginning to end OFF medication. Medica-
ion did not interact with Condition, F < 1, nor did Time interact

ith Condition F < 1.

High SADRP values are expected ON medication and low SADRP
alues OFF medication. Thus, high �SADRP scores indicate that par-
icipants improved ON compared to OFF medication. �SADRP in

able 2
SADRP and �RPE (ON compared to OFF medication) and SADRP OFF and RPE OFF
edication are correlated with LEDD, disease duration and age.

Variables LEDD Disease duration Age

LEDD (daily mg)  1 0.82** −0.01
Disease duration (yrs) 0.82** 1 0.29
Age  (yrs) −0.01 0.29 1
�RPE  90/10 condition 0.48* 0.20 0.16
�RPE  80/20 condition −0.08 −0.08 0.01
�RPE  70/30 condition 0.31 0.20 −0.20
�SADRP 90/10 condition −0.66** −0.43 0.09
�SADRP 80/20 condition 0.01 −0.02 −0.02
�SADRP 70/30 condition −0.002 0.07 −0.02
RPE  90/10 OFF −0.25 −0.31 −0.25
RPE  80/20 OFF 0.04 0.02 0.03
RPE  70/30 OFF −0.28 −0.04 −0.29
SADRP 90/10 OFF 0.34 0.19 −0.29
SADRP 80/20 OFF −0.17 −0.15 −0.21
SADRP 70/30 OFF 0.20 −0.16 −0.48*

* p < 0.05.
** p < 0.01.
Fig. 5. �RPE (ON–OFF) in the 90/10 Condition as a function of LEDD. �SADRP
(ON–OFF) in the 90/10 Condition as a function of LEDD.

the 90/10 Condition revealed a highly significant negative correla-
tion with LEDD, r90/10 = −0.66, p < 0.01. Patients with lower levels
of LEDD dosage showed improvements in action-outcome learning
when ON compared to OFF medication; for patients with higher
daily dosages the net effect of medication ON versus OFF was null
or even negative. Other background variables did not significantly
correlate with �SADRP values in any of the conditions, see Table 2
for correlations.

SADRP OFF medication did not correlate with disease duration
or medication dosage. The absence of a correlation between SADRP
and RPE OFF medication and disease duration implicates that dif-
ferences in baseline performance are probably not due to disease
severity.

4. Discussion

The present study aimed to test the effect of DA modula-
tion on probabilistic reward-based decision-learning that relies
on striatal functioning. First, our results replicate the behavioral
findings reported by Haruno and Kawato (2006a); performance
improved as a function of time with an increase in predictability
of stimulus–action–reward relations.

Second, we predicted that DA medication would improve
SADRP values (especially towards the later stages of learning),
whereas it would have less pronounced effects on RPE. These
predictions were tested by means of a within-subjects design; PD
patients performed the probabilistic learning task both ON and OFF

medication. Early on during learning, patients relied on feedback
to figure out which actions yielded reward. This process of learning
by outcome evaluation, reflected in the resulting RPEs, was  not
influenced by DA medication. If anything, higher medication
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osages impaired outcome evaluation; low to moderate dosages
ielded no systematic effect. This suggests that the caudate
nd ventral striatum (and their associated circuitry involved in
ypothesis generation and value updating) do not benefit from DA
edication, and in fact, may  be detrimentally overdosed at higher

oses of DA. As learning progressed, however, PD patients began to
uild up expectations that specific stimulus–action combination
ould likely yield reward. These SADRP values were larger when
atients were ON compared to OFF medication, suggesting that
he anterior putamen (and its associated sensorimotor circuitry
nvolved in action selection and stimulus–action learning) benefits
rom DA medication. However, this reward prediction (increase in
ADRP) benefit was observed only in patients with a relatively low
o moderate medication dosages.

Relevant to the present investigation are findings that the DA
rojections to regions of the striatum are affected differentially by
he progression of PD. PD is initially characterized by DA deple-
ions in the striatum that produce motor deficits, such as tremor,
radykinesia, and rigidity (McAuley, 2003), involving the motor

oop (including putamen and supplementary motor areas). Sub-
equently, these effects extend to the dorsolateral loop (including
he DL-PFC and the dorsolateral head of the caudate) and still
ater to the orbitofrontal loop (lateral OFC, ventromedial head of
audate) and the anterior cingulate loop (involving the anterior
ingulate cortex and the ventral striatum, in particular the nucleus
ccumbens; Kaasinen & Rinne, 2002). These effects are associated
ith cognitive deficits, such as impairments in reversal learn-

ng, decision-making, working memory, response inhibition, and
peed/accuracy balancing (Cools et al., 2001; Cooper et al., 1992;
wainson et al., 2000; Wylie et al., 2009a, 2009b).  Based on the
ifferential effect of disease progression in PD on caudate and puta-
en  (Bjorklund & Dunnett, 2007; Kaasinen & Rinne, 2002; Kish,

hannak, & Hornykiewicz, 1988), especially SADRP would benefit
rom DA medication, because putamen is usually more depleted
rom DA than caudate and ventral striatum early in the disease.
ess pronounced effects were expected for RPE. It turned out that
ot disease duration, but medication dosage accounts for the effec-
iveness of medication in reducing the reward-prediction error and
trengthening stimulus–action reward associations. How can we
xplain this effect of medication dosage on SADRP and, to a lesser
xtent, RPE?

In a review on DA modulation of cognitive functions in PD
atients, Cools (2006) suggested that performance might not neces-
arily be impaired by DA depletion. When performance is impaired
n patients who are ON medication for several years, this may  be
ue to earlier and greater L-Dopa doses and fluctuating medication
esponses. With respect to our study, this might explain reduced
erformance ON medication but not the relatively high perfor-
ance OFF medication in patients on higher doses of medication.

tudies with different DA polymorphisms have shown contrast-
ng effects of DA drugs on cognitive performance reflecting the
enetic variation in baseline levels of DA. Thus individuals with
ifferent baseline levels of DA occupy a different position on the

nverted U-shaped curve of optimal performance with DA in PFC
Arnsten, 1998; Goldman-Rakic, Muly, & Williams, 2000). A sim-
lar U-shaped curve has been suggested for striatal DA function
Schönberg, Daw, Joel, & O’Doherty, 2007). Using PET imaging in
ealthy adults, Cools et al. (2009) showed that individual differ-
nces in striatal DA synthesis capacity predicts positive or negative
eward-based learning abilities as well as changes in learning
n response to DA drug challenge. Higher baseline DA synthesis
apacity was associated with better reversal learning from pos-

tive relative to negative feedback compared to individuals with
ower synthesis capacity. When administered a D2 agonist, partici-
ants with low baseline DA synthesis developed enhanced learning
rom positive relative to negative reward, whereas participants
hologia 50 (2012) 583– 591 589

with high baseline DA synthesis showed a pattern that reversed
from their baseline, i.e., learning was  enhanced for negative reward
relative to positive reward. Similarly, DA polymorphisms in PD
patients, in addition to their disease duration, may affect their
performance-related response to DA medication. That is, early stage
PD patients who  have low baseline DA levels to begin with may
show improved performance with administration of low to mod-
erate DA medication doses and be resistant to an “overdosing”
response in relatively intact striatal areas until much higher medi-
cation dosages are administered. Clearly, future studies are needed
to better account for individual variability in baseline performance,
baseline dopamine characteristics, and response to treatment.

According to the overdose hypothesis (Cools et al., 2001;
Gotham et al., 1988), functions known to rely on the relatively
DA depleted dorsal striatum or dorsolateral loop, such as task-
switching, are enhanced with medication (Cools et al., 2001;
Gotham et al., 1988), while the relatively DA intact ventral circuitry
and associated cognitive functions are overdosed and impaired.
However, we  observed medication-driven impairments of RPE
(relying on dorsal and ventral caudate) only in patients who
used high daily dosages of DA medication. The overdose hypothe-
sis mainly explains impaired performance found in reversal and
extinction learning (Cools et al., 2001; Czernecki et al., 2002;
Swainson et al., 2000; Voon et al., 2010). Frank’s (2005) modeling
work elaborated on this idea and showed that PD patients OFF med-
ication more effectively process negative feedback in comparison
to positive feedback whereas PD patients ON medication show the
opposite pattern. In the current task though, a reward-prediction
error results from either unexpected positive or negative feedback,
thus a preference for positive or negative feedback cannot be dis-
tinguished based on SADRP and RPE values.

The current study contributed insights beyond those reported
above by focusing on component processes of reward-based
decision-learning that rely on different striatal circuits, and by
examining individual differences in the effects of DA medication.
Our results allow us to articulate with greater precision the effect
of DA medication on the caudate and ventral striatum on the one
hand and on the putamen on the other. While DA medication leaves
outcome evaluation processes (supported by caudate and ven-
tral striatum) seemingly unaffected, or suggestively worsened at
high dosages, learning to predict which actions yield reward (sup-
ported by the anterior putamen and associated motor circuitry) is
improved by DA medication (at low to moderate dosages). Whether
positive and negative feedback differentially affect caudate and
putamen functioning remains an open question.

4.1. Limitations

There are some limitations related to the experimental
paradigm that could affect the interpretation of the results.
Although SADRP and RPE have been shown to correlate with differ-
ent striatal structures, at the behavioral level they are not entirely
independent. That is, a decrease in RPE values yields an increase in
SADRP values (according to the computational model). Thus, a null
result of medication status on RPE values at the beginning of the
task but an effect on SADRP at the end of learning does not entirely
exclude that the caudate is modulated by DA. Rather, it suggests
that the medication does not affect the early phases of learning.

Currently it is unknown how many trials (and feedback) are
needed to activate the caudate and putamen in PD patients and
in what way this is modulated by DA medication although there is
some evidence that PD patients need more trials to learn (Shohamy,

Myers, Kalanithi, & Gluck, 2008). The decay component of the learn-
ing rate was defined according to a standard formula that was  kept
constant for all patients and conditions to be able to specifically
investigate changes in the outcome parameters, i.e., SADRP and
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PE. Although we did not model the decay of the learning rate,
he model-based studies that have estimated learning parameters
n PD patients (Rutledge et al., 2009; Voon et al., 2010) seem to be
n line with the present study. Rutledge et al. modeled the learning
ate in a task with constantly changing reward probabilities. They
ound higher learning rates in PD patients ON medication com-
ared to OFF medication. Thus, the application of a higher learning
ate would have amplified our findings (i.e., smaller RPEs and larger
ADRPs ON medication). Similar to our findings, Voon et al. (2010)
howed that exposure to a larger daily dosage of DA medication in
D patients leads to a lower percentage of correct responses and a
lower learning rate in a reward learning task, although this finding
as specific for learning from losses. Inclusion of fMRI measures as

 means for tracking the differential involvement and potentially
emporal engagement of caudate and putamen during probabilistic
eward-based learning in PD would be very informative.

In the 80/20 and 70/30 Conditions, performance was not
ffected by DA medication. When reward is less predictable, the
atch between stimulus and response categories becomes less

lear, which negatively affects implicit learning (Maddox & Ashby,
004). With increased probabilistic learning difficulty, performance
ay  have shifted from an implicit learning strategy to a more

xplicit rule-based learning strategy (Maddox & Ashby, 2004), for
xample ‘every blue stimulus asks for a left response’. Rule-based
erformance relies on frontal and medial temporal lobes and may
e less affected by DA changes in the BG compared to the implicit

earning system.
Simple motor functions did not improve with DA medication

n the current study, although DA medication was  supposed to
nhance motor processing through its effect on the cortical “motor”
oop. Similar findings have recently been reported by Graef et al.
2010). They showed a null-finding on motor skills together with an
mprovement in instrumental learning. The results from the finger
apping task and the pegboard test in our study indicate that there
ere no significant improvements of peripheral motor skills. More
ronounced dopaminergic-related improvements on peripheral
otor skills might however be expected in PD samples associated
ith more advanced stages of the disease. Importantly, we obtained
A medication effects on reward learning in the absence of motor
ffects which suggest that the observed dosage-dependent effects
n reward-based learning cannot be explained in terms of, and
o beyond, medication-related changes in peripheral motor skills.
oreover, this suggests that changes in the ability to issue a man-

al response ON and OFF medication do not explain the difference
n performance.

Additionally, there was no effect of disease duration on reward-
ased learning. However, Rowe et al. (2008) showed reduced ACC
ctivation with reward expectation in patients with more advanced
isease duration as well as an impaired behavioral response to
eward signaling cues. Thus, more sensitive measures indicative
or the degree of cortical degeneration with disease duration, like
maging data, might provide further insight into the interaction
etween disease duration and medication effects on reward-based

earning processes.

.2. Conclusion

In sum, the present findings highlight the effect of DA med-
cation on two aspects of reward-based learning, the evaluative
omponent (RPE) and the action–reward association learning com-
onent (SADRP). While DA medication leaves evaluative aspects of
ew learning supported by caudate and ventral striatum largely

naffected, or even worsened at high dosages, DA medication, par-
icularly low and moderate doses, improves the action–reward
earning processes supported by the anterior putamen and asso-
iated motor circuitry. Notably, evaluative and action–reward
hologia 50 (2012) 583– 591

association components of learning were compromised by high
doses of DA medication.

Acknowledgements

NCvW was  supported by a travel grant from “Leids Universitair
Fonds” (LUF). The work of KRR, GPHB and WPMvdW was  supported
by grants from the Netherlands Organization for Scientific Research
(NWO).

References

Alexander, G. E., DeLong, M.  R., & Strick, P. L. (1986). Parallel organization of func-
tionally segregated circuits linking basal ganglia and cortex. Annual Review of
Neuroscience,  9, 357–381.

Alexander, G. E., Crutcher, M.  F., & DeLong, M.  R. (1990). Basal
ganglia–thalamocortical circuits: Parallel substrates for motor, oculomotor,
‘prefrontal’ and ‘limbic’ functions. Progress in Brain Research, 85,  119–147.

Arnsten, A. F. T. (1998). Catecholamine modulation of prefrontal cortical cognitive
function. Trends in Cognitive Sciences, 2(11), 436–447.

Balleine, B. W.,  Delgado, M.  R., & Hikosaka, O. (2007). The role of the dorsal striatum
in  reward and decision-making. Journal of Neuroscience, 27,  8161–8165.

Bertsekas, D. P., & Tsitsiklis, J. N. (1996). Neuro-dynamic programming. Belmont, MA:
Athena Scientific.

Bjorklund, A., & Dunnett, S. B. (2007). Dopamine neuron systems in the brain: An
update. Trends in Neurosciences,  30(5), 194–202.

Bódi, N., Kéri, S., Nagi, H., Moustafa, A., Myers, C. E., Daw, N., et al. (2009). Reward-
learning and the novelty-seeking personality: A between- and within-subjects
study of the effects of dopamine agonists on young Parkinson’s patients. Brain,
132(9), 2385–2395.

Brown, P., & Marsden, C. D. (1998). What do the basal ganglia do? Lancet,  351(9118),
1801.

Cools, R. (2006). Dopaminergic modulation of cognitive function-implications for L-
DOPA treatment in Parkinson’s disease. Neuroscience and Biobehavioral Reviews,
30,  1–23.

Cools, R., Barker, R. A., Sahakian, B. J., & Robbins, T. W.  (2001). Enhanced or impaired
cognitive function in Parkinson’s disease as a function of dopaminergic medica-
tion and task demands. Cerebral Cortex,  11(12), 1136–1143.

Cools, R., Frank, M.  J., Gibbs, S. E., Miyakawa, A., Jagust, W.,  & D’Esposito, M.  (2009).
Striatal dopamine predicts outcome-specific reversal learning and its sensitivity
to dopaminergic drug administration. Journal of Neuroscience, 29(5), 1538–1543.

Cooper, J. A., Sagar, H. J., Doherty, S. M.,  Jordan, N., Ridswell, P., & Sullivan, E. V. (1992).
Different effects of dopaminergic and anticholineric therapies on cognitive and
motor function in Parkinson’s disease. Brain, 115(6), 1701–1725.

Crevoisier, C., Monreal, A., Metzger, B., & Nilsen, T. (2003). Comparative single- and
multiple-dose pharmacokinetics of levodopa and 3-O-methyldopa following a
new dual-release and a conventional slow-release formulation of levodopa and
benserazide in healthy volunteers. European Neurology,  49(1), 39–44.

Czernecki, V., Pillon, B., Houeto, J., Pochon, J., Levy, R., & Dubois, B. (2002). Motivation,
reward, and Parkinson’s disease: Influence of dopatherapy. Neuropsychologia,
40(13), 2257–2267.

Dayan, P., Kakade, S., & Montague, P. (2000). Learning and selective attention. Nature
Neuroscience,  3, S1218–S1223.

Daw, N. D., Niv, Y., & Dayan, P. (2005). Uncertainty-based competition between
prefrontal and dorsolateral striatal systems for behavioral control. Nature Neu-
roscience, 8(12), 1704–1711.

Eyny, Y., & Horvitz, J. (2003). Opposing roles of D1 and D2 receptors in appetitive
conditioning. Journal of Neuroscience, 23(5), 1584–1587.

Faure, A., Haberland, U., Condé, F., & El Massioui, N. (2005). Lesion to the nigros-
triatal dopamine system disrupts stimulus–response habit formation. Journal of
Neuroscience,  25,  2771–2780.

Folstein, M.,  Folstein, S., & McHugh, P. (1975). “Mini-mental state”. A practical
method for grading the cognitive state of patients for the clinician. Journal of
Psychiatric Research, 12(3), 189–198.

Frank, M.  J. (2005). Dynamic dopamine modulation in the basal ganglia: A neu-
rocomputational account of cognitive deficits in medicated and nonmedicated
Parkinsonism. Journal of Cognitive Neuroscience, 17(1), 51–72.

Frank, M.  J., Seeberger, L. C., & O’Reilly, R. C. (2004). By carrot or by stick: Cognitive
reinforcement learning in Parkinsonism. Science, 306, 1940–1943.

Gasser, U. E., Jorga, K., Crevoisier, C., Hovens, S. E. L., & van Giersbergen, P. L. M.
(1999). COMT inhibition by tolcapone further improves levodopa pharmacoki-
netics when combined with a dual-release formulation of levodopa benserazide
–  A novel principle in the treatment of Parkinson’s disease. European Neurology,
41(4),  206–211.

Gerardin, E., Lehericy, S., Pochon, J. B., Tezenas du Montcel, S., Mangin, J. F., Poupon,
F.,  et al. (2003). Foot, hand, face and eye representation in the human striatum.

Cerebral Cortex,  13,  162–169.

Goldman-Rakic, P. S., Muly, E. C., II, & Williams, G. V. (2000). D1 receptors in pre-
frontal cells and circuits. Brain Research Review, 31,  295–301.

Gotham, A., Brown, R., & Marsden, C. (1988). ‘Frontal’ cognitive function in patients
with  Parkinson’s disease ‘on’ and ‘off’ levodopa. Brain, 111(2), 299–321.



ropsyc

G

H

H

H

K

K

K

K

K

K

L

M

M

M

O

O

O

P

P

1944–1853.
N.C. van Wouwe et al. / Neu

raef, S. G. S., Biele, G., Krugel, L. K., Marzinzik, F., Wahl, M.,  Wotka, J., et al. (2010). Dif-
ferential influence of levodopa on reward-based learning in Parkinson’s disease.
Frontiers in Human Neuroscience, 4, 169.

aruno, M.,  & Kawato, M.  (2006a). Different neural correlates of reward expecta-
tion and reward expectation error in the putamen and caudate nucleus during
stimulus–action reward association learning. Journal of Neurophysiology, 95(2),
948–959.

aruno, M.,  & Kawato, M.  (2006b). Heterarchical reinforcement-learning
model for integration of multiple cortico-striatal loops: fMRI examina-
tion  in stimulus–action–reward association learning. Neural Networks, 19(8),
1242–1254.

ornykiewicz, O. (1974). Mechanisms of action of L-DOPA in Parkinson’s disease.
Life  Sciences, 15(7), 1249–1259.

aasinen, V., & Rinne, J. O. (2002). Functional imaging studies of dopamine sys-
tem and cognition in normal aging and Parkinson’s disease. Neuroscience and
Biobehavioral Reviews, 26(7), 785–793.

imura, M. (1995). Role of basal ganglia in behavioral learning. Neuroscience
Research, 22,  353–358.

ish, S. J., Shannak, K., & Hornykiewicz, O. (1988). Uneven pattern of dopamine
loss in the striatum of patients with idiopathic Parkinson’s disease: Patho-
physiologic and clinical implications. New England Journal of Medicine, 318,
876–880.

nowlton, B. J., Mangels, J. A., & Squire, L. R. (1996). A neostriatal habit learning
system in humans. Science,  273, 1399–1402.

nutson, B., Adams, C., Fong, G., & Hommer, D. (2001). Anticipation of increasing
monetary reward selectively recruits nucleus accumbens. Journal of Neuro-
science,  21(16), 1–5.

oepp, M.  J., Gunn, R. N., Lawrence, A. D., Cunningham, V. J., Dagher, A., Jones, T., et al.
(1998). Evidence for striatal dopamine release during a video game. Nature,  393,
266–268.

ezak, M.  D. (1995). Neuropsychological assessment (3rd ed.). New York: Oxford Uni-
versity Press.

addox, W.,  & Ashby, F. (2004). Dissociating explicit and procedural-learning based
systems of perceptual category learning. Behavioral Processes, 66(3), 309–332.

cAuley, J. H. (2003). The physiological basis of clinical deficits in Parkinson’s dis-
ease. Progress in Neurobiology, 69,  27–48.

cClure, S., Berns, G., & Montague, P. (2003). Temporal prediction errors in a passive
learning task activate human striatum. Neuron, 38(2), 339–346.

’Doherty, J., Dayan, P., Schultz, J., Deichmann, R., Friston, K., & Dolan, R. J. (2004).
Dissociable roles of ventral and dorsal striatum in instrumental conditioning.
Science,  304(5669), 452–454.

’Reilly, R., & Frank, M.  (2006). Making working memory work: A computational
model of learning in the prefrontal cortex and basal ganglia. Neural Computation,
18(2), 283–328.

yama, K., Hernadi, I., Iijima, T., & Tsutsui, K-I. (2010). Reward prediction error coding
in  dorsal striatal neurons. Journal of Neuroscience, 30,  11447–11457.

ackard, M., & Knowlton, B. (2002). Learning and memory functions of the Basal

Ganglia. Annual Review of Neuroscience, 25,  563–593.

appata, S., Dehaene, S., Poline, J. B., Gregoire, M.  C., Jobert, A., Delforge, J., et al.
(2002). In vivo detection of striatal dopamine release during reward: A PET
study with [11C] Raclopride and a single dynamic scan approach. NeuroImage,
16,  1015–1027.
hologia 50 (2012) 583– 591 591

Rowe, J. B., Hughes, L., Ghosh, B. C. P., Eckstein, D., Williams-Gray, C. H., Fallon, S.,
et  al. (2008). Parkinson’s disease and dopaminergic therapy and dopaminergic
therapy – Differential effects on movement, reward, and cognition. Brain, 131,
2094–2105.

Rutledge, R. B., Lazzaro, S. C., et al. (2009). Dopaminergic drugs modulate learning
rates and preservation in Parkinson’s patients in a dynamic foraging task. Journal
of  Neurosci, 29(48), 15104–15114.

Schönberg, T., Daw, N. D., Joel, D., & O’Doherty, J. P. (2007). Reinforcement
learning signals in the human striatum distinguish learners from nonlearn-
ers  during reward-based decision making. Journal of Neuroscience, 27,  12860–
12867.

Schultz, W.  (2002). Getting formal with dopamine and reward. Neuron, 36(2),
241–263.

Schultz, W.,  Tremblay, L., & Hollerman, J. R. (2003). Changes in behavior-related
neuronal activity in the striatum during learning. Trends in Neurosciences, 26(6),
321–328.

Seger, C. A., & Cincotta, C. M.  (2005). The roles of the caudate nucleus in human
classification learning. Journal of Neuroscience, 25(11), 2941–2951.

Seymour, B., Daw, N., Dayan, P., Singer, T., & Dolan, R. (2007). Differential encod-
ing of losses and gains in the human striatum. Journal of Neuroscience, 27(18),
4826–4831.

Shohamy, D., Myers, C. E., Grossman, S., Sage, J., & Gluck, M.  A. (2005). The role of
dopamine in cognitive sequence learning: Evidence from Parkinson’s disease.
Behavioural Brain Research, 156(2), 191–199.

Shohamy, D., Myers, C. E., Kalanithi, J., & Gluck, M.  A. (2008). Basal ganglia and
dopamine contributions to probabilistic category learning. Neuroscience and
Biobehavioral Reviews, 32(2), 219–236.

Sutton, R. S., & Barto, A. G. (1998). Reinforcement learning: An introduction. Cambridge,
MA:  MIT  Press.

Swainson, R., Rogers, R. D., Sahakian, B. J., Summers, B. A., Polkey, C. E., & Robbins,
T.  W.  (2000). Probabilistic learning and reversal deficits in patients with Parkin-
son’s disease or frontal or temporal lobe lesions: Possible adverse effects of
dopaminergic medication. Neuropsychologia,  38(5), 596–612.

Tricomi, E., Delgado, M.,  & Fiez, J. (2004). Modulation of caudate activity by action
contingency. Neuron, 41(2), 281–292.

Voon, V., Pessiglione, M.,  et al. (2010). Mechanisms underlying dopamine-mediated
reward bias in compulsive behaviors. Neuron, 65(1), 135–142.

Weintraub, D., Siderowf, A. D., Potenza, M.  N., Goveas, J., Morales, K. H., Duda, J. E.,
et  al. (2006). Association of dopamine agonist use with impulse control disorders
in Parkinson disease. Archives of Neurology,  63(7), 969–973.

Wylie, S. A., van den Wildenberg, W.  P. M.,  Ridderinkhof, K. R., Bashore, T. R., Powell, V.
D.,  Manning, C. A., et al. (2009a). The effect of Parkinson’s disease on interference
control during action selection. Neuropsychologia,  47(1), 145–157.

Wylie, S. A., van den Wildenberg, W.  P. M.,  Ridderinkhof, K. R., Bashore, T. R., Powell,
V.  D., Manning, C. A., et al. (2009b). The effect of speed-accuracy strategy on
response interference control in Parkinson’s Disease. Neuropsychologia, 47,  pp.
Yin, H. H., Knowlton, B. J., & Balleine, B. W.  (2004). Lesions of dorsolateral stria-
tum preserve outcome expectancy but disrupt habit formation in instrumental
learning. European Journal of Neuroscience, 19,  181–189.

Young, P. (1984). Recursive estimation and time series. New York: Springer-Verlag.


	Dose dependent dopaminergic modulation of reward-based learning in Parkinson's disease
	1 Introduction
	1.1 The role of the striatum in reward-based decision-learning
	1.2 Dopamine modulation of reward-based learning
	1.3 Reward-based learning in Parkinson's disease
	1.4 Present study

	2 Methods
	2.1 Participants
	2.2 Task and apparatus
	2.2.1 Questionnaires

	2.3 Experimental paradigm
	2.4 Procedure
	2.5 Computational model for estimating SADRP and RPE
	2.6 Analyses

	3 Results
	3.1 Motor performance
	3.2 Reward-based decision-learning
	3.2.1 Cumulative accuracy
	3.2.2 RPE
	3.2.3 SADRP


	4 Discussion
	4.1 Limitations
	4.2 Conclusion

	Acknowledgements
	References


